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NETWORK MEASURES

 Centrality 

 How important a node is within a network

 User Influence

 Transitivity and Reciprocity

 How links (edges) are formed in a social graph

 Link Prediction

 Similarity (Structural, Regular)

 Compute similarity between two nodes in a network

 Community Analysis, Behavior Prediction



CENTRALITY

How important a node is within a network



CENTRALITY MEASURES

 Single Node Centrality

 Degree Centrality

 Eigenvector Centrality

 Katz Centrality

 PageRank

 Betweenness Centrality

 Closeness Centrality

 Group Centrality

 Degree Centrality

 Betweenness Centrality

 Closeness Centrality



DEGREE CENTRALITY

 Count the number of links attached to the node

 The key question was “how many people 
retweeted this node?”





EIGENVALUE CENTRALITY

 Eigenvector centrality tries to generalize degree 

centrality by incorporating the importance of the 

neighbors  (focus on incoming neighbors)

 Eigenvector Centrality builds upon this to ask 
“how important are these retweeters?”



EIGENVALUE CENTRALITY

 To keep track of neighbors, we can use the adjacency 

matrix A of a graph. 

 Let ce(vi) denote the eigenvector centrality of node vi.

 where lambda is some fixed constant.

 Assuming 

is the centrality vectors for all nodes



EIGENVALUE CENTRALITY

 From

 To have positive centrality values, we can compute the 

eigenvalues of A and then select the largest eigenvalue

 The corresponding eigenvector is Ce

(Eigenvector Centrality of the graph)





BETWEENESS CENTRALITY

 For a node vi, compute the number of shortest 
paths between other nodes that pass through vi,



BETWEENESS CENTRALITY

 Possible maximum of betweeness centrality is

 Hence, to normalize betweeness centrality, 



CLOSENESS CENTRALITY

 The more central nodes are, the more quickly 

they can reach other nodes. 

 Formally, these nodes should have a smaller 

average shortest path length to other nodes. 

where                                 is node vi’s average 

shortest path length to other nodes.



GROUP “DEGREE”CENTRALITY

 Let S denote the set of nodes to be measured for 

centrality. Let V – S denote the set of nodes not 

in the group.

 Group degree centrality is defined as the number 

of nodes from outside the group that are 

connected to group members.

 In-degree centrality, Out-degree centrality, and 

Normalization can also be applied. 
(Maximum value = |V – S|)



GROUP “BETWEENESS” CENTRALITY

 where            denotes the number of shortest paths 

between s and t that pass through members of S.

 Maximum value,                can be used for 
normalization.



GROUP “CLOSENESS” CENTRALITY



TRANSITIVITY AND RECIPROCITY

How links (edges) are formed in a social graph



TRANSITIVITY

 Transitivity is when a 

friend of my friend is my

friend.

 Higher transitivity in a graph results in a denser 

graph, which in turn is closer to a complete 

graph. 

 Thus, we can determine how close graphs are to 

the complete graph by measuring transitivity.

 2 types:

 [global] clustering coefficient 

 local clustering coefficient 



GLOBAL CLUSTERING COEFFICIENT

(v1,v2) (v2,v3) (v3,v1)

(1,2) (2,3) (3,1)

(1,3) (3,2) (2,1)

(2,1) (1,3) (3,2)

(2,3) (3,1) (1,2)

(3,1) (1,2) (2,3)

(3,2) (2,1) (1,3)

1 triangle contains 
6 closed path of length 2 



GLOBAL CLUSTERING COEFFICIENT

 The global clustering coefficient can also be defined as

 A triple is an ordered set of three nodes, connected by 
two (i.e., open triple) or three (closed triple) edges. 

 Two triplets are different when

 their nodes are different, or

 their nodes are the same, but the triplets are missing 
different edges.

 So, one triangle creates three different connected and 
closed triplets



LOCAL CLUSTERING COEFFICIENT

 If a vertex vi has ki neighbors, ki(ki-1)/2 edges 

can exist among the vertices within the 

neighborhood. 

 The clustering coefficient is defined as

where ni denotes the number of links connecting 

the ki neighbors of node i. 

 The average clustering coefficient is given by 



RECIPROCITY

 Reciprocity is “If you become my friend, I’ll be 

yours.”

 Reciprocity counts the number of reciprocal pairs 

in the graph. Any directed graph can have a 

maximum of |E|/ 2 pairs.

 Reciprocity can be computed using the adjacency 
matrix A



SIMILARITY

Compute similarity between two nodes in a network



STRUCTURAL EQUIVALENCE

 The size of this neighborhood defines how similar 

two nodes are. 

Let N(vi) and N(vj) be the neighbors of nodes vi

and vj, respectively

 By normalization,



STRUCTURAL EQUIVALENCE



STRUCTURAL COHESION MEASURES

Name: Description:

Density

(Harary 1969)

The proportion of group members who are 

tied (with a "positive" relation, such as 

friendship, respect, acquaintance, past 

collaboration, etc.).

Average or maximum 

Distance

(Harary 1969)

The average (or maximum) graph-theoretic 

distance between all pairs of members

Centralization/Core-

Periphery Structure

(Freeman 1979; Borgatti & 

Everett 1996)

The extent to which the network is NOT 

divided into cliques that have few 

connections between groups

Homophily*

(Marsden 1988)

The extent to which members of the group 

have their closest ties to members who are 

similar to themselves


