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NETWORK MEASURES

Centrality
How important a node is within a network
User Influence

Transitivity and Reciprocity
How links (edges) are formed in a social graph
Link Prediction

Similarity (Structural, Regular)

Compute similarity between two nodes in a network
Community Analysis, Behavior Prediction



© CENTRALITY

How important a node is within a network




CENTRALITY MEASURES

Single Node Centrality
Degree Centrality
Eigenvector Centrality
Katz Centrality
PageRank
Betweenness Centrality
Closeness Centrality

Group Centrality
Degree Centrality

Betweenness Centrality
Closeness Centrality



Ca(vi) = d* (prestige),
Ca(vy) = d™ (gregariousmness),

DEGREE CENTRALITY ¢,y = 4 +a
o Count the number of links attached to the node

o The key question was “how many people
retweeted this node?”
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Normalizing Degree Centrality

Simple normalization methods include normalizing by the maximum pos-
sible degree,
d;

-1

where n is the number of nodes. We can also normalize by the maximum
degree,

C™(v) = —= (3.5)

&I".
Gy () = 3.6
©)= s (3.6)
Finally, we can normalize by the degree sum,
um d; di  d;
Ci™(vi) = (3.7)
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EIGENVALUE CENTRALITY

Eigenvector centrality tries to generalize degree
centrality by incorporating the importance of the
neighbors (focus on incoming neighbors)

Eigenvector Centrality builds upon this to ask
“how 1important are these retweeters?”
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EIGENVALUE CENTRALITY

To keep track of neighbors, we can use the adjacency
matrix A of a graph.

Let c,(v;) denote the eigenvector centrality of node v;.
1 H
Ct-‘r(f'ri) — E Z A},icﬁ{ﬁj)f
j=1

where lambda 1s some fixed constant.

Assuming C, = (Cu(v7), Co(12), ..., Co(v,))"
1s the centrahty vectors for all nodes

AC, = ATC,.



EIGENVALUE CENTRALITY

From AC, = ATC,.

This basically means that C, is an eigenvector of adjacency matrix A'
(or A in undirected networks, since A = AT) and A is the corresponding
eigenvalue.

To have positive centrality values, we can compute the
elgenvalues of A and then select the largest eigenvalue

The corresponding eigenvector is C,
(Eigenvector Centrality of the graph)



Example 3.3. For the graph shown in Figure 3.2(b), the adjacency matrix is as

follows:
0 1 0
& 10 1
V4 v, Vs A=10 1 0
° O 1 11
01 0

1
1
1
0
0

oo =k O

(3.17)

The eigenvalues of A are (-=1.74,-1.27,0.00, +0.33, +2.68). For eigenvector
centrality, the largest eigenvalue is selected: 2.68. The corresponding eigenvector

is the eigenvector centrality vector and is

[ 0.4119 |
0.5825

C,=| 04119

Based on eigenvector centrality, node v, is the most central node.

0.5237
| 0.2169 |

(3.18)




BETWEENESS CENTRALITY

For a node v,, compute the number of shortest
paths between other nodes that pass through v,

Cy(v;) = Z ‘-Tst(r"i)r

9]
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where gy is the number of shortest paths from node s to t (also known
as information pathways), and o4(v;) is the number of shortest paths from s
to t that pass through v;. In other words, we are measuring how central
vi’s role is in connecting any pair of nodes s and t. This measure is called
betweenness centrality.



BETWEENESS CENTRALITY

Possible maximum of betweeness centrality 1s

751(0f) n-1 @
Cp(v;) = Z - ; rI Z 1= ( )—(11—1)(11—2) QQD\/\/GDQ
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Hence, to normalize betweeness centrality,
Ch (U')
2(}1 -1
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CLOSENESS CENTRALITY

The more central nodes are, the more quickly
they can reach other nodes.

Formally, these nodes should have a smaller
average shortest path length to other nodes.

1
Cc(vz) — —
ZZ]IE
where [, = ﬁ ZEJJ.#I. i i 1s node v;'s average

shortest path length to other nodes.



GROUP “DEGREE”CENTRALITY

Let S denote the set of nodes to be measured for
centrality. Let V — S denote the set of nodes not
1n the group.

Group degree centrality i1s defined as the number
of nodes from outside the group that are
connected to group members.

C?OUP(S) = [{v; € V = Sou; is connected to v; € S}.

In-degree centrality, Out-degree centrality, and

Normalization can also be applied.
(Maximum value = |V - S|)



GROUP “BETWEENESS” CENTRALITY

Cgroup(s) _ Z Ust(s)

b
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where 04(S) denotes the number of shortest paths
between s and t that pass through members of S.

. V-5
Maximum value, 2( , ) can be used for
normalization.



GROUP “CLOSENESS” CENTRALITY

Closeness centrality for groups can be defined as

1

Igroup !
5

Coor(S) =

(3.45)

where Tgmup = ﬁ Engs 15,@-} and Igrﬂj is the length of the shortest path
between a group 5 and a nonmember v; € V — 5. This length can be
defined in multiple ways. One approach is to find the closest member in S
to v

lsp, = minly, . (3.46)
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One can also use the maximum distance or the average distance to

compute this value.




@ TRANSITIVITY AND RECIPROCITY

How links (edges) are formed in a social graph




TRANSITIVITY

Transitivity 1s when a
friend of my friend is my °
friend.

Higher transitivity in a graph results in a denser
ograph, which 1n turn 1s closer to a complete
ograph.

Thus, we can determine how close graphs are to
the complete graph by measuring transitivity.

2 types:
[global] clustering coefficient
local clustering coefficient



GLOBAL CLUSTERING COEFFICIENT

The clustering coefficient analyzes transitivity in an undirected graph.
Since transitivity is observed when triangles are formed, we can measure
it by counting paths of length 2 (edges (v, v;) and (v,, v3)) and checking
whether the third edge (v3, v1) exists (L.e., the path is closed).

B |Closed Paths of Length 2|
B |Paths of Length 2|

(Number of Triangles) X 6

C= |
|Paths of Length 2| (1,2) (2,3) (3,1)
(1,3) (3,2) (2,1)

(2,1) (1,3) (3,2)

0'@ 1 triangle contains (2,3) (3,1) (1,2)

@ 6 closed path of length 2 (3,1) (1,2) (2,3)
(3,2) (2,1) (1,3)




GLOBAL CLUSTERING COEFFICIENT

The global clustering coefficient can also be defined as

3 x number of triangles

C = . .
number of connected triplets of vertices

number of closed triplets

number of connected triplets of vertices

A triple 1s an ordered set of three nodes, connected by
two (1.e., open triple) or three (closed triple) edges.

Two triplets are different when

their nodes are different, or

their nodes are the same, but the triplets are missing
different edges.

So, one triangle creates three different connected and
closed triplets



LocAL CLUSTERING COEFFICIENT

If a vertex v, has k; neighbors, k;(k,-1)/2 edges

can exist among the vertices within the ()

neighborhood.

The clustering coefficient i1s defined as 090
ks (ki — 1)

where n. denotes the number of links connecting
the k; neighbors of node 1.

The average clustering coefficient is given by

<C> — % ZCZ'



RECIPROCITY

Reciprocity 1s “If you become my friend, I'll be
yours.”

Reciprocity counts the number of reciprocal pairs
1n the graph. Any directed graph can have a
maximum of | E|/ 2 pairs.

Reciprocity can be computed using the adjacency
matrix A

Yiji<iAijAj 1 >
R = = ’ ~ = —Tr(A p
2 R

where Tr(A) = A1 +Aso+- - +A, = Yo Ai




© SIMILARITY

Compute similarity between two nodes in a network




STRUCTURAL EQUIVALENCE

The size of this neighborhood defines how similar
two nodes are.

o(v;, v5) = [N(v;) N N(0))].

Let N(v;) and N(v;) be the neighbors of nodes v;
and v;, respectively

By normalization,

’ N(v;) N N(v;)
OTJaccard (U;‘, if“]J") - N(Uz) U N(UJ’) ;
N(v;) N N(v;

O Cosine (Uff t]j) —




STRUCTURAL EQUIVALENCE

ILTSigni ficance (Uif Uj)

Opearson (Ui XY )

Y (A= A)Aj - A),
k

Gsi%,nific ance (Ui s Uj)

\/Zk Az‘k \/Zk k=
Zk( A;)f

‘\/Zk(Af,k - \/Zk ik



STRUCTURAL COHESION MEASURES

Name:

Density
(Harary 1969)

Average or maximum
Distance
(Harary 1969)

Centralization/Core-
Periphery Structure
(Freeman 1979; Borgatti &
Everett 1996)

Homophily*
(Marsden 1988)

Description:

The proportion of group members who are
tied (with a "positive" relation, such as
friendship, respect, acquaintance, past
collaboration, etc.).

The average (or maximum) graph-theoretic
distance between all pairs of members

The extent to which the network 1s NOT
divided into cliques that have few
connections between groups

The extent to which members of the group
have their closest ties to members who are
similar to themselves



